

Interface and Network Infrastructure to Support EV Participation in Smart Grids

Engineering and Physical Sciences Research Council

Understand the behaviour of E.V. rich systems and investigate technical solutions

Observations

- High penetrations of E.V. will increase energy flows which will have to be supplied through the distribution network. Peak power requirements may be significantly greater than present.
	- Problems of phase unbalance.
	- Problems with voltage regulation .
- Peak power requirements could be reduced by 'smart charging' techniques which disperse the charge time of individual connections. However this approach may limit the functionality of E.V. charging networks. :
	- \bullet Optimise use of available clean energy
	- •• Provide network support through vehicle to connection.
- E.V. charging may become the dominant load on distribution networks.
	- \bullet • Network behaviour dominated by power electronics.
		- Harmonics
		- Filter currents
		- Interactions between E.V. chargers (+ other devices such as P.V.)

Network and Interface Technology (Themes)

Distribution Networks For High EV Penetration

- \bullet Network management.
- •Distribution level FACTs

Distribution Network to Charge System Interface

- •Improved efficiency (without impacting on network performance)
- •Improved power quality
- •Improved control
- \bullet Multiple function converters (e.g. combining drive and charge power electronics)

Vehicle Interface

• Wireless Charging

Distribution Networks for High EV Penetration

An Assessment Method of Distribution Network's Ability to Accommodate Electric Vehicles

Junrong Xia China Electric Power Research InstituteSeptember, 2015

Case Studies

Case Network

Network: IEEE 123 Node Test Feeder

Rated Voltage: 4.16 kV

Rated Capacity: 5000 kVA

Conclusions and Future Work

Conclusions

- A method based on Monte Carlo simulation is proposed to forecast load of PEVs **applied with different charging strategies. A PEVs integration scenario under** smart charging is simulated, and the effectiveness of the method is proven.
- **A method for evaluating distribution network's ability to accommodate electric** vehicles is proposed. This method can be used to study the impact of PEVs on **distribution network, and be used to compute the maximum PEVs hosting capacity in ^a given network.**
- IEEE 123 node test feeder is taken as a case network for PEVs hosting capacity **evaluation, and the results indicate that distribution network can accommodate more PEVs with advanced charging strategies.**

China-UK Workshop, UK

Coordinated Dispatch of Electric Vehicles and Wind Power Considering Time-of-use Pricing

Ms. Liya Ye, Research Student College of Electrical Engineering, Zhejiang University Sep 24th 2015

4. EV Load Management

EV load management on an EVA unit

EVA assigns the output power of pertaining EVs , considering their various charging demand,**charging behaviors (e.g. expected time to plug to grid).**

5. Simulation and Conclusions

Conclusions

NSFC-EPSRC Collaborative Research Initiative in Smart Grids and the Integration of Electric Vehicles

Management and Control of EV Charging Infrastructures by Modeling Stochastic Behavior of Electric Bus Fleet

Qian Dai, Tao Cai, Shanxu Duan, and Feng Zhao Power Electronics Research CenterSchool of Electrical and Electronic Engineering

Huazhong University of Science & Technology

1. Background and Tasks

EV Battery Swap Station

Bus Service Route

Swap Service Channels Battery Swap Robot

4. Conclusions

The charging load characteristics of BSS is investigated to guide the **coordinated battery charging** for mitigating the impact of disorderly charging behaviors on the distribution network.

Charging load demand can be modelled from Four variables.

- 1) Hourly number of EVs for battery swapping;
- 2) Charging start time;
- 3) Bus travel distance;
- 4) Charging duration.

Simulation of an actual typical BSS results show that the proposed prediction methods of the BSS charging load are suitable for forecasting the horizon 24 h ahead. According to the charging load demand forecasted, different optimized schedules for charging batteries group can be proposed to get better economy or smaller load fluctuation.

Multi‐level Converters for Distribution Networks

Prof. Tim Green Dr. Phil Clemow

Imperial College Distribution‐level Power Electronics

London

owertontro

Research Group

&

- \bullet Distribution network is traditionally passive from the substation to load
- \bullet Voltage control using tap-changers at the substation transformer keeps feeder voltage in limits and compensates for voltage drop along the line
- \bullet Increase in distributed generation (PV and Electric vehicles) can dramatically change load profiles and current flows (crucially current direction)
- \bullet Tap changers cannot change quickly enough to counter changes in PV generation
- \bullet A number of solutions available at mid-feeder and feeder ends
- \bullet Soft Open Point (SOP) is a power flow controlled device which is connected where a normally open point would be found and allows many control techniques
- \bullet A SOP is typically a pair of back to back inverters

Imperial College &London **Increase Feeder / Transformer Capacity**

owerontrol

Research Group

Converter Comparison

Imperial College

London

- • All converters are compared with fewest SMs (3300V IGBT)
- • MMC is most efficient with a small jump to AAC and a larger jump to ACCHB
	- • MMC is larger in volume than the AAC and significantly larger than the ACCHB.

Imperial College

London

- Work on designing multi-level converters for distribution networks is nearing completion
- • Final designs for the three circuit layouts are complete with comparisons of efficiency, volume and THD
- AAC shows very good balance between losses and volume

Distribution Network to Charge System Interface

Comparing SiC MOSFET, IGBT and Si MOSFET for L.V AC/DC interface

Nina Roscoe, Yanni Zhong and Stephen Finney University of Strathclyde 9th November 2015

Introduction: Design Requirements (L.V MMC)

•**Two level converters:**

Harmonic and AC filter requirement is linked to switching frequency. (SiC, GaN) may allow higher switching speeds (lower switching loss) at voltages suitable for E,V charging systems.

> • Fast switch speeds may increase high frequency EMI.

•**Multi-level converters**

Decouple power quality from switching loss.

- Switching loss may be dramatically reduced.
- • Relatively cheap, high performance Si-MOSFETs may be used
- • Circuits are more complex than two level converters.

ia1

Vdc

SM1

SM1

One Arm

Conclusions

- \blacksquare Extensive and careful modelling has been used to predict loss in
	- Si MOSFET MMC
		- 7 levels to 43 levels
		- Including inter-cell resistance, parallel combination resistance
	- SiC MOSFET 2-level
	- Baseline comparison with IGBT
	- Si MOSFET demonstrates lowest loss
		- SiC offers interesting high performance in simple circuit, at the cost of poorer power quality
- Modelling accuracy for Si MOSFET MMC has been demonstrated with single cell measurements
	- Estimations of track resistance also verified during this exercise
- Effectiveness of slowed gate-drive on reducing ringing experimentally demonstrated

Power Loss Comparison

Loss comparison for two phase-leg Si MOSFET 5-level MMC, SiC 2-level, and GaN 3-level MMC converters *(10kW, 10kHz, 600Vdc, M=0.57 and unity power factor)*

 $^{\rm 0}$ $\,$ Number of devices colfhected in... 15

Semiconductor conduction and switching power losses

Semiconductor conduction and switching power losses and capacitor losses

Synchronization Stability of PLL-Based Grid Connected VSC

Yunjie Gu, Wuhua Li, Xiangning He

College of Electrical Engineering, Zhejiang University E-mail: guyunjie@zju.edu.cn

Dynamics Categorization of Voltage Source Converter (VSC)

- \blacktriangleright **PLL synchronization instability may be induced due to the dynamic interaction between PLL angle and PoC voltage angle**
- \blacktriangleright **The interaction is more significant in ^a weak grid with large line impedance**
- \blacktriangleright **The synchronization instability can be damped by reducing the PLL control coefficient**

The Grid to EV Interface

SRM Based EVs/HEVs Top-to-Toe Solution

Dr. Yihua Hu 25/9/2015

Charging without a charging station

NSFC-RCUK_EPSRC

Design Consideration for Compensation Topology Against Coupling Variation in Inductive EV Chargers

3. Implementation and Conclusion

Dynamic WPT Prototype

◆ the power roadway

The chain including eight transmitter coils

Charging current without any regulation

3. Implementation and Conclusion

- ♦ Robust reaction against the coupling variation is necessary to keep effective power transfer
- ♦ Through careful design of resonant tank, the sensitivity to coupling variation is reduced to minimal extent
- \blacklozenge Stationary and dynamic charging experiment shows its potential application

Link Efficiency-Led Design of Lightweight Inductive Power Transfer Systems for EVs

Paul D. Mitcheson, David C. Yates, George Kkelis, Samer Aldhaher, James Lawson, Chris Kwan, and Tim C Green Department of Electrical and Electronic Engineering, Imperial College London, U.K.

High Frequency Semi-resonant Class-E Driver

78% dc-load efficiency, 100 W, 6 MHz, IXYS Si module

Conclusion

- Well on the way to achieving a complete lightweight 3 kW IPT system suitable as an initial EV charging prototype
- \bullet Maximising the link efficiency for air core coils serves as the design starting point
- \bullet The system architecture, circuit blocks and components have been chosen to maximise the end-to-end efficiency
- \bullet AMCs are considered as a lightweight approach to shielding to meet health and safety regulations and minimise interaction with the chassis
- A comparison with wired EV charging systems is being started since realistic predictions of the end-to-end link IPT link efficiency can now be made

Wireless Power and Data Transfer via a Common Inductive Link using Frequency Division Multiplexing

Jiande Wu, **Jin Du**, Xiangning He **Zhejiang University**

China‐U.K. NSFC‐EPSRC Project

I. Background

For typical WPT system, communication is essential.

- \triangleright Circuit control: Output voltage feedback
	- Load detection
- \triangleright Status monitoring
- \triangleright Multi-controllers synchronization

Necessity of communication Drawbacks of conventional solutions

Radio frequency (RF) link

- \triangleright High costs
- \triangleright Low reliability with increasing power

Single inductive link, single carrier

- Low data rate
- \triangleright Lower power efficiency

Multiple inductive link, multiple carrier

Strong magnetic interference limits SNR

Typical WPT system structure

 \triangleright The basic idea of the proposed method is to add a communication cell in both the primary side and pickup side.

Block diagram of WPDT system

- \triangleright A novel method based on communication cell, which integrates near field communication with wireless power transfer is proposed.
- The performance of the power and data transfer, as well as the cross-effect between power transfer and data communication, are analysed in detail.
- The results obtained from ^a 500W experimental platform are in line with the theoretical analysis, which verify the effectiveness of the proposed method.

Thank You